More hour record stuff to follow on from the item on Jens Voigt's hour ride.

This time to look at the physics impact of increasing altitude. I'll layer on top of this the physiological impact in a future post.

tldr version, click on this chart:

In brief:

- for a given W/m^2, you'll go faster as altitude increases

- for a given speed, the W/m^2 required reduces with altitude

- for a given altitude, to go faster the W/m^2 required increases

Now the long version:

There are two major factors which determine the speed a rider can maintain on flat terrain such as a velodrome, that being their power output and the air resistance. Or put another way, these are the primary energy supply and demand factors. There are other smaller energy factors as well (mostly on the demand side) but power output and air resistance are by far the most important when it comes to riding an hour record attempt on velodromes (or any race of individual speed on flatter terrain).

**Energy Supply**

What power output one can sustain for an hour is a function of several underlying factors that I discuss in this post. We influence that primarily through training, and of course to a large extent it depends upon the genetic gifts we are blessed with*.

There is of course also the physiological impact of altitude, as the partial pressure of oxygen reduces with increasing altitude, and as a result, so reduces the power we are able to maximally sustain aerobically (with oxygen). How much reduction in power occurs with altitude is individually variable, and you can acclimate to some extent as well, but there is no denying that once altitude starts getting high, ability to generate power definitely falls away.

I go through some of this in this post on altitude training, and I will be returning to this and its impact on hour records in a future post.

**Energy Demand**

For hour records on a velodrome, air resistance accounts for more than 90% of the total energy demand factors. In the case of indoor velodromes and speeds in the 50-56km/h range, it's of the order of 92-93% of the total energy demand, with the balance mostly being rolling resistance and other frictional energy losses, and a tiny fraction in kinetic energy changes. This dominance of air resistance in the energy demand is why there is such a solid relationship between speed and the ratio of power to aerodynamic drag.

**Air resistance & CdA**

Air resistance on a cyclist is a function of several factors, being:

- the bike and rider's coefficient of air drag (Cd),

- their effective frontal area (A),

- the speed they are travelling at,

- the speed and relative direction of any wind, and

- the density of the air.

The coefficient of drag (Cd) and frontal area (A) multiply together to give us a measure of a rider's air resistance property - CdA. A lower CdA means you can go faster for the same power, or less power is required to sustain the same speed.

CdA is something a rider can change through bike positional and equipment choices (e.g. using an aerodynamic tuck position reduces your CdA compared with sitting more upright, or using deep section wheels with fewer spokes lowers CdA compared with using shallow box section rims with lots of spokes).

So to ride faster on an indoor velodrome where there is no tail or head wind to aid or hinder, you'll need to either:

- reduce your CdA, or

- reduce the density of air you are riding through.

Or of course some net combination of all three that results in more speed.

It is possible that one can produce less power but have a significant reduction in air resistance factors such that the resulting speed is higher. For example, sometimes there is trade off between the advantage gained from use of an aerodynamic position on a bike, even though there may be a sacrifice of some power output due to the impact the aggressive bike position has on a rider's bio-mechanical effectiveness.

**It all boils down to W/m^2**

Robert Chung some years ago published a nice chart that shows the equivalency of speed on flat terrain with the ratio of power to CdA:

What we can see in this chart is how well Power/CdA can help estimate speed on flat road terrain over a wide range of power outputs and CdA values. Of course it's not a perfect correlation, as you can attain a slightly higher speed with the same W/m^2 as the power (and CdA) increases. So even if you share the same W/m^2 as another rider, the rider that has more absolute power will still be ever so slightly faster.

Not by much though. As an example, if we compared two riders on a low rolling resistance velodrome, one with 400W and another with 10% more power (440W) and both had the same power to CdA ratio of 1700W/m^2, then the more powerful rider will only be ~0.1km/h or 0.2% faster (all else equal). Like I said, there's not much in it.

I also showed this in the chart from my previous post on the Jens Voigt hour ride, where estimating his W/m^2 with reasonable precision is much easier than his absolute power. If the power was lower, so the W/m^2 must be a little higher, but not by much. Over a 100W (25-30%) range of possible power outputs, the W/m^2 required to attain the same speed varies by only 2%.

So even if we consider a range of power outputs typical for elite riders of the calibre likely to attempt an hour record ride, the W/m^2 ratio required for a given speed on a given velodrome will be within a pretty tight range.

**Air density**

Air density however isn't quite as easy for an individual to control, as it is largely a function of environmental conditions, in particular:

- air temperature,

- barometric pressure, and

- altitude.

Air density drops with an increase in temperature and altitude, and with a reduction in barometric pressure. Humidity also affects air density, but only by a very small amount (humid air is marginally less dense than dry air). So while a rider cannot control the atmospheric barometric pressure, they can choose a velodrome with a temperature control system, or one that will likely be warm, as well as choose from a range of tracks that are at different altitudes.

**Altitude and its impact on speed**

So given all that, I thought I'd look at how the combined effect of the power and aero drag values required to ride at certain speeds varies with altitude. As is typical of me, I've summarised this in a chart shown below. As usual, click on the image to see a larger version.

It's not overly complex, but let me explain.

On the vertical axis is the ratio of power output to the coefficient of aero drag x frontal area (CdA). Power / CdA in units of watts per metres squared.

On the horizontal axis is altitude in metres.

Then I have plotted a series of slightly curves lines, one each for speed ranging in 1km/h increments from 47km/h to 56km/h, and another line for 56.375km/h, which is the speed Chris Boardman averaged for his hour record.

For the sake of comparison, I've fixed the air temperature, barometric pressure, bike + rider mass and rolling resistance to be constant values for each. I did a little variation of power, but not much, and as I have demonstrated, the impact is very small.

So if we look at any particular line, we can see how the W/m^2 required to sustain that speed reduces as altitude increases. And of course we can see that for any given W/m^2 the speed you can sustain varies with altitude.

e.g. let's take 1800W/m^2. At sea level, the 1800W/m^2 line crosses the 51km/h line. As you trace horizontally from left to right, the 1800W/m^2 crosses the speed lines roughly as follows:

51km/h @ sea level

52km/h @ ~500m altitude

53km/h @ ~1000m

54km/h @ ~1450m

So naturally there is interest in using tracks at higher altitudes in order to ride faster and set records.

Now of course different tracks have variable quality surfaces, and so the assumption of rolling resistance being equal at all tracks is not valid, so any comparison of actual tracks should also consider impact of changes to coefficient of rolling resistance (Crr). Even so, since Crr accounts for only ~ 5-6% of the total energy demand, then track smoothness, while a factor, is more important when considering tracks at similar altitudes.

**But what about power output at altitude?**

Well of course there is a trade off between the speed benefit of lower air density at increasing altitudes, and the reduction in a rider's power output as partial pressure of O2 falls.

Hence as altitude increases, while a rider's CdA will not change, their power output will fall and hence their W/m^2 will also fall accordingly. So the W/m^2 line for any individual won't be horizontal, but rather trend downwards from left to right.

How quickly an individual's W/m^2 line drops away with altitude then determines the real speed impact of altitude.

**So, what's the optimal altitude for an hour record?**

I'm going to explore that in a future post (although I'm certainly not the first to have done so). So stay tuned.

** Pithy Power Proverb: "Choose your parents wisely".*